Professor Roberto Mignani
- Details
ll gruppo di ricerca annuncia, con profondo rammarico, la perdita avvenuta all'inizio del 2018 del Professor Roberto Mignani, il grande teorico della Teoria dello Spazio-Tempo deformato. |
The group deeply regrets to announce that at the beginning of 2018 professor Roberto Mignani, the great theorist of the Deformed Space-Time theory, passed away. |
Professor Roberto Mignani

Nato a Messina (Italia) nel 1946, conseguì il dottorato di ricerca in Fisica presso l'Università di Palermo nel 1970. Prima di entrare all'Università Roma Tre il Professor Mignani è stato docente e ricercatore presso il Dipartimento di Fisica Teorica dell'Università di Catania, presso il Dipartimento di Fisica teorica dell'Università di Catania, presso il Dipartimento di Fisica dell'Università dell'Aquila e presso il Dipartimento di Fisica "G. Marconi" dell'Università La Sapienza di Roma. In questi atenei ha insegnato corsi di laurea in Elettrodinamica classica e quantistica, Meccanica quantistica, Fisica statistica, Teoria quantistica avanzata e calcolo. La sua attività di ricerca ha compreso teoria della relatività, fisica nucleare e subnucleare, teoria dei campi e fisica matematica ed è stato autore di circa centosessanta pubblicazioni in tali campi. È stato autore del "Test di Fisica, vol. I e II" (Aracne, Roma, 1997) con R. V. Konoplich e N. A. Dobrodeev; del resoconto storico-scientifico "Enrico Fermi e i secchi della sora Cesarina - Metodo, pregiudizio e caso in fisica" (Di Renzo, Roma, 2000) con F. Cardone; delle monografie di fisica teorica "Energy and Geometry - An Introduction to Deformed Special Relativity" (World Scientific, Singapore, 2004) e "Deformed Spacetime - Geometrizing Interactions in Four and Five dimensions" (Springer-Verlag, Berlin, 2007) entrambi con F. Cardone. Nel giugno 2010 ha ricevuto il premio Telesio-Galilei presso l'Università di Pecs (Ungheria). |
He was born in Messina (Italy) in 1946, received his Ph.D. in Physics from the University of Palermo in 1970. Before entering Roma Tre University Roberto Mignani was teacher and researcher at the Department of Theoretical Physics of Catania University, at the Department of Physics of L'Aquila University and at the Department of Physics "G. Marconi" of La Sapienza University of Rome. In these institutions he taught undergraduate courses in Classical and Quantum Electrodynamics, Quantum Mechanics, Statistical Physics, Advanced Quantum Theory and Calculus. His researches included relativity theory, nuclear and subnuclear physics, field theory and mathematical physics. He was author of about one hundred and sixty publications in such fields. He was the author of the works: "Test di Fisica, vol. I e II" (Aracne, Roma, 1997) with R. V. Konoplich and N. A. Dobrodeev; the historical-scientific account "The Atomic Bomb in the maid's bucket" (Di Renzo, Roma, 2000) with F. Cardone; the theoretical physics monographs: "Energy and Geometry - An Introduction to Deformed Special Relativity" (World Scientific, Singapore, 2004) and "Deformed Spacetime - Geometrizing Interactions in Four and Five dimensions" (Springer-Verlag, Berlin, 2007) both with F. Cardone. In June 2010 he received the Telesio-Galilei Award for Physics at the University of Pecs (Hungary). |
New Nuclear Science
a new way for new Physics
In the 90s of the last century, two Italian physicists, Fabio Cardone and Roberto Mignani, began to develop a new phenomenological theory that takes into account the limits of validity of Local Lorentz Invariance (LLI). This symmetry (invariance under Lorentz transformation) has been at the basis of every physical theory since the first two decades of the last century when Albert Einstein published his Special Theory of Relativity and wrote its second postulate about the constancy of the speed of light as a general assumption always valid in any ambit of physics. There exist several theoretical attempts to predict its violation, which, however, start with the preconceived idea that the limits of this symmetry have to be searched at very high energies which, unfortunately, can not be reached in any laboratory experiment. On the contrary, the two physicists mentioned above, leaned on phenomenology in order to let Nature (Physics) suggest how to look for such a violation. They deformed the minkowskian metric tensor of Einstein's Special Theory of Relativity by a parameter E with the dimensions of energy and analysed by this tensor several experiments (for the 4 fundamental interactions) whose results presented some type of anomaly with respect to the theoretical predictions in agreement with Lorentz invariance. From these experiments, they quantified the parameter E of the theory and found out the mathematical expressions of the metric tensor as a function of the energy E of the physical phenomenon under consideration. This allowed them to make predictions that could be checked by experiments. In particular, with regards to the fundamental hadronic interaction, more commonly known as the strong nuclear force, the theory states that if you can concentrate in a microscopic volume and in a very short time interval, an amount of energy greater than or equal to 367.5 GeV, new type of nuclear phenomena can be triggered. These predictions have led the research towards the design and the subsequent implementation of experiments capable to verify them. The phenomenon that potentially satisfies the three requirements in terms of space, time and energy is cavitation, that is, the nucleation and subsequent sudden and violent collapse of gas bubbles within a liquid subjected to ultrasounds.